Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1063/1.3635...
Article . 2011 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Extragalactic relativistic jets

Authors: Gabriele Ghisellini; Felix A. Aharonian; Werner Hofmann; Frank M. Rieger;

Extragalactic relativistic jets

Abstract

Extragalactic relativistic jets are engines able to carry out to large distances a huge amount of power, not only in the form of radiation, but especially in the form of kinetic energy of matter and fields. As such, they can be thought as one of the most efficient engines of Nature, perhaps even more efficient than accretion. We are starting to disclose these features through a detailed study of their properties, made possible by the analysis of the energy band where they emit most of their electromagnetic output, namely the gamma-ray band. That is why the observations by the Fermi satellite and by the ground based Cherenkov telescopes are crucial to understand extragalactic jets. At the start, we believe they are magnetically dominated. And yet, on the scale where they emit most of their luminosity, their power is already in the form of kinetic energy of particles. The spectral properties of bright sources show a trend, controlled mainly by the bolometric apparent luminosity. With improved sensitivity, and the detection of weaker sources, we can explore the idea that the spectral trends are a result of the same physical quantities controlling the emission of non-jetted sources: the black hole mass and the accretion rate. This is based on recent results on sources showing a thermal component in their spectrum, besides a non-thermal continuum. That the jet power should be linked to accretion is intriguing. Most of the apparent diversity of extragalactic radio sources can then be understood on the basis of the viewing angle, controlling the relativistic Doppler boosting of the emission, the black hole mass and the accretion rate.

17 pages, 8 figures, invited plenary talk at the Texas symposium, Heidelberg, December 2010

Related Organizations
Keywords

Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green