Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Aging study of nickel-copper-manganite negative temperature coefficient thermistors by thermopower measurements

Authors: P. Castelan; Bui Ai; A. Loubiere; A. Rousset; R. Legros;

Aging study of nickel-copper-manganite negative temperature coefficient thermistors by thermopower measurements

Abstract

Ceramic nickel-copper-manganite based negative temperature coefficient thermistors are unstable under thermal constraint, which increases the resistivity of these devices. This unstability can be reduced by the addition of a small amount of barium. These ceramics have a spinel structure, and the conduction takes place by a hopping process involving [Mn3+]/[Mn4+] octahedral ions. This study by the use of thermopower measurements points out that the resistivity change under thermal constraint is principally due to the disproportionation of [Mn3+]/[Mn4+] ions in the octahedral sites. Furthermore, it seems that some nickel ions migrate from octahedral to tetrahedral sites.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!