Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VIRTA
Conference object . 2010
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2022 . Peer-reviewed
Data sources: Research.fi
https://doi.org/10.1063/1.3455...
Article . 2010 . Peer-reviewed
Data sources: Crossref
Pure VTT Finland
Conference object . 2010
Data sources: Pure VTT Finland
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PP composites with Hybrid Nanofillers: NTC phenomenon

NTC phenomenon
Authors: Juha Sarlin; Kirsi Immonen; A. D’Amore; Domenico Acierno; Luigi Grassia;

PP composites with Hybrid Nanofillers: NTC phenomenon

Abstract

Electric conductive plastic composites have a wide potential for commercial applications, some examples are EMI shielding housings and components in automotive industry and in consumer electronics, equipments in health care sector and fuel cell components. A phenomenon in conductive composites, especially in composites with carbon based fillers, is change of thermal induced change in conductivity as a result of morphological transitions. Usually the observed changes are practically irreversible. The phenomenon may cause increasing resistivity, usually called as “positive temperature coefficient” (PTC) or decreasing resistivity, called “negative temperature coefficient (NTC), where the new morphology created by heat treatment is more favorable for electric conductivity compared to the original state. The existence of NTC is a sing of the lost potential in material design and processing. Therefore detailed information about the phenomenon gives us tools to develop high performance conductive materials. It this paper we discuss about NTC phenomenon observed in PP composites with CNT or in‐situ synthesized CNT‐PANi hybrid nanofiller with an amphiphilic dispersing agent. The goal of the paper is not to present a comprehensive model of this phenomenon; we present some experimental results which may be related to polymer‐filler interactions. These details are a part of this complicated phenomenon.

Country
Finland
Related Organizations
Keywords

Nanotubes, Nanoparticles in polymers, Electrical and magnetic properties related to treatment conditions, Conducting polymers, Solids, SDG 7 - Affordable and Clean Energy, Reinforced polymers and polymer-based composites, Organic-inorganic hybrid nanostructures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!