Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Fast, Ultra-Sensitive and Scalable Detection Platform Based on Superconducting Resonators for Fundamental Condensed-Matter and Astronomical Measurements

Authors: L. J. Swenson; J. Minet; G. J. Grabovskij; O. Buisson; F. Lecocq; C. Hoffmann; P. Camus; +14 Authors

A Fast, Ultra-Sensitive and Scalable Detection Platform Based on Superconducting Resonators for Fundamental Condensed-Matter and Astronomical Measurements

Abstract

Low-temperature physics and astronomy have traditionally focused on developing exquisitely sensitive single‐pixel detectors. While this has yielded considerable results, these technologies almost uniformly suffer from an inability to scale to large array sizes. In order to circumvent this barrier, frequency-multiplexing techniques have recently emerged as a suitable solution. Here we present a detailed description of a measurement platform based on frequency-multiplexed superconducting resonators along with the results from two distinct measurements that leverage this nascent technology to achieve multiple-device readout. The first application discussed is a seven-pixel array sensor of the permittivity of liquid helium suitable for quantum hydrodynamic experiments. The second implementation described is a prototype 16-channel mm-wavelength detector optimized for ground-based astronomical detection at the 30 meter Institute for Millimeter-Wave Radio Astronomy (IRAM) telescope in Pico Veleta, Spain.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?