
arXiv: 0811.4747
The year 2008 has witnessed remarkable steps in developing high energy neutrino telescopes. IceCube at the South Pole has been deployed with 40 of its planned 80 strings and reached half a cubic kilometer instrumented volume, in the Mediterranean Sea the "first-stage" neutrino telescope ANTARES has been completed and takes data with 12 strings. The next years will be key years for opening the neutrino window to the high energy universe. IceCube is presently entering a region with realistic discovery potential. Early discoveries (or non-discoveries) with IceCube will strongly influence the design and the estimated discovery chances of the Northern equivalent KM3NeT. Following theoretical estimates, cubic kilometer telescopes may just scratch the regions of discovery. Therefore detectors presently planned should reach sensitivities substantially beyond those of IceCube.
Invited Talk, International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, July 2008, 12 pages, 11 figures
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
