Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1063/1.2778...
Article . 2007 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Anisotropic MHD turbulence

Authors: Ng, C. S.; Bhattacharjee, A.;
Abstract

The solar wind and the interstellar medium are permeated by large-scale magnetic fields that render magnetohydrodynamic (MHD) turbulence anisotropic. In the weak-turbulence limit in which three-wave interactions dominate, analytical and high-resolution numerical results based on random scattering of shear-Alfv��n waves propagating parallel to a large-scale magnetic field, as well as direct simulations demonstrate rigorously an anisotropic energy spectrum that scales as $k^{-2}_\perp$, instead of the famous Iroshnikov-Kraichnan (IK) spectrum of $k^{-3/2}$ for the isotropic case. Even in the absence of a background magnetic field, anisotropy is found to develop with respect to the local magnetic field, although the energy spectrum is globally isotropic and is found to be consistent with a $k^{-3/2}$ scaling. It is also found in direct numerical simulations that the energy cascade rate is much closer to IK scaling than a Kolmogorov scaling. Recent observations in the solar wind on cascade rates (as functions of the proton temperature and solar wind speed at 1 AU) seem to support this result [Vasquez et al. 2007].

Related Organizations
Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Plasma Physics (physics.plasm-ph), Astrophysics - Solar and Stellar Astrophysics, Physics - Space Physics, FOS: Physical sciences, Physics - Plasma Physics, Solar and Stellar Astrophysics (astro-ph.SR), Space Physics (physics.space-ph), Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green