Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar coronal heating by forced magnetic reconnection: Multiple reconnection events

Authors: Rekha Jain; Philippa Browning; K. Kusano;

Solar coronal heating by forced magnetic reconnection: Multiple reconnection events

Abstract

Magnetic reconnection is a strong candidate for a coronal heating mechanism, and heating by forced magnetic reconnection is investigated here. Two dimensional, nonlinear magnetohydrodynamic simulations are used to investigate forced magnetic reconnection in a compressible plasma. The reconnection occurs when a sheared force-free field is perturbed by a slow disturbance (pulse) at the boundary which is representative of the solar corona where the reconnection is induced by the photospheric motions. The case of driving by successive pulses, which generate a series of heating events which may interact with each other, is considered. This is in order to model the heating of the corona by a series of nanoflare events. For small perturbations, the simulation results are consistent with the previous analytic theory based on linear approach where a current sheet is formed initially at the resonant surface followed by reconnection and then release of magnetic energy. For large amplitude perturbations, or close to the threshold for tearing instability, the system exhibits strong nonlinear aspects. Following the second driving pulse, the current sheet expands along the separatrix before relaxing to a reconnective equilibrium and releasing even more magnetic energy for the same amplitude perturbation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!