
doi: 10.1063/1.1747999
The compressibility of xenon containing 0.14 mole percent of krypton has been measured from 16.65° (the critical temperature) to 300°C and over the density range 1 to 10 mole per liter. The constants of the Beattie-Bridgeman equation of state for the sample used and for pure xenon have been determined from these measurements. The constants for pure xenon are R=0.08206, A0=4.6715, a=0.03311, B0=0.07503, b=0, c=30.02×104 in units of normal atmos, liter per mole, and °K (T°K=t°C+273.13). The weight of one liter of Xe at a pressure of one standard atmosphere is calculated from its molecular weight (131.3) and the above parameters to be 5.897 g per liter at 0°C and 5.467 g per liter at 70°F.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
