Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electron–Ion and Ion–Ion Dissociative Recombination of Oxygen. II. Ion–Ion Recombination

Authors: F. T. Chan;

Electron–Ion and Ion–Ion Dissociative Recombination of Oxygen. II. Ion–Ion Recombination

Abstract

The rate coefficient and the thermal cross section for the oxygen ion–ion dissociative recombination are calculated using the semiclassical formalism. The motion of the heavy particles (positive and negative ions) in their mutual Coulomb field is treated classically. At certain ranges of the ion–ion separation (determined from energy conservation), the electron tunnels from the negative ion to the positive ion. Using the experimental data on the electron binding energy of O2−, this tunneling effect is calculated in the WKB approximation. It is found that the linewidth of the levels due to the dissociative effect is important for the electron tunneling and the molecular dissociation. The rate coefficients and the thermal cross sections have been calculated between 200° and 500°K, and have the orders of magnitude 10−8 − 10−7 cm3/sec and 10−12 cm2, respectively. We find that they both decrease as the temperature increases, and have the following approximate relations: α∝T−1/2, σ(th) ∝T−1. No direct laboratory data is available, but the theoretical results are in agreement with indirect observations from the ionosphere.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!