Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O

Authors: Jan P. van der Eerden; Hiroki Nada;

An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O

Abstract

An intermolecular potential model of H2O with six interaction sites is proposed. The model is developed for the simulation of ice and water near the melting point. Parameters in the potential are determined to reproduce the real melting point of ice, and densities of ice and water near the melting point, which are predicted by calculating derivatives of the free energies and volumes of ice and water against potential parameters. Free energy calculations are carried out for several ice structures and water, and the results are compared with those obtained in four- and five-site models, which are currently in use. It is shown that, only in the present six-site model, the proton-disordered hexagonal ice is the stable structure at the melting point, as in real ice. The melting point of the proton-disordered hexagonal ice at 1 atm is estimated to be 271±9 K in the present model, which is in good agreement with the real melting point of 273.15 K. Moreover, results of Monte Carlo simulations of ice and water show that the present six-site model reproduces well the real structural and thermodynamic properties of ice and water near the melting point.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    214
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
214
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!