Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2002
Data sources: zbMATH Open
Journal of Mathematical Physics
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Bargmann transform and canonical transformations

The Bargmann transform and canonical transformations.
Authors: Villegas-Blas, Carlos;

The Bargmann transform and canonical transformations

Abstract

This paper concerns a relationship between the kernel of the Bargmann transform and the corresponding canonical transformation. We study this fact for a Bargmann transform introduced by Thomas and Wassell [J. Math. Phys. 36, 5480–5505 (1995)]—when the configuration space is the two-sphere S2 and for a Bargmann transform that we introduce for the three-sphere S3. It is shown that the kernel of the Bargmann transform is a power series in a function which is a generating function of the corresponding canonical transformation (a classical analog of the Bargmann transform). We show in each case that our canonical transformation is a composition of two other canonical transformations involving the complex null quadric in C3 or C4. We also describe quantizations of those two other canonical transformations by dealing with spaces of holomorphic functions on the aforementioned null quadrics. Some of these quantizations have been studied by Bargmann and Todorov [J. Math. Phys. 18, 1141–1148 (1977)] and the other quantizations are related to the work of Guillemin [Integ. Eq. Operator Theory 7, 145–205 (1984)]. Since suitable infinite linear combinations of powers of the generating functions are coherent states for L2(S2) or L2(S3), we show finally that the studied Bargmann transforms are actually coherent states transforms.

Keywords

Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics, Geometry and quantization, symplectic methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!