<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1063/1.117142
Scanning electron microscopy micrographs of n-type silicon carbide (SiC) anodized in HF solution showed a highly porous layer having structures with dimensions of about 50 nm. The capacitance of the porous electrodes revealed a huge surface area. The photocurrent quantum yield of a porous SiC/electrolyte diode is spectacularly enhanced with respect to that of a flat diode for light absorbed in the indirect-bandgap and for sub-bandgap light.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |