Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mitochondria in Steatohepatitis

Authors: D, Pessayre; A, Berson; B, Fromenty; A, Mansouri;

Mitochondria in Steatohepatitis

Abstract

For the first time in history, populations in affluent countries may concomitantly indulge in rich food and physical idleness. Various combinations of obesity, diabetes, and hypertriglyceridemia, with insulin resistance as the common feature, cause hepatic steatosis, which can trigger necroinflammation and fibrosis. Patients with "primary" steatohepatitis exhibit ultrastructural mitochondrial lesions, decreased activity of respiratory chain complexes, and have impaired ability to resynthesize ATP after a fructose challenge. Mitochondria play a major role in fat oxidation and energy production but also leak reactive oxygen species (ROS) and are the main cellular source of ROS. In patients with steatosis, mitochondrial ROS may oxidize hepatic fat deposits, as suggested in animal models. Lipid peroxidation products impair the flow of electrons along the respiratory chain, which may cause overreduction of respiratory chain components, further increasing mitochondrial ROS formation and lipid peroxidation. Another vicious circle could involve ROS-induced depletion of antioxidants, impairing ROS inactivation. Blood vitamin E is decreased in some obese children with steatohepatitis, and serum transaminases improve after vitamin E supplementation. Steatohepatitis is also caused by alcohol abuse, drugs, and other causes. In "secondary" steatohepatitis, mitochondrial ROS formation is further increased as the causative disease itself directly increases ROS or first impairs respiration, which secondarily increases mitochondrial ROS formation. This "second hit" could cause more lipid peroxidation, cytokine induction, Fas ligand induction, and fibrogenesis than in primary steatohepatitis.

Keywords

Aging, Fatty Acids, Mitochondria, Fatty Liver, Mice, Glucose, Chronic Disease, Animals, Humans, Lipid Peroxidation, Energy Metabolism, Reactive Oxygen Species, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    354
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
354
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!