
pmid: 33794551
AbstractDiabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Diabetes Mellitus, Humans, Heparan Sulfate Proteoglycans
Diabetes Mellitus, Humans, Heparan Sulfate Proteoglycans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
