
doi: 10.1049/rpg2.13017
Abstract Solar photovoltaic energy is a vital renewable resource because it is clean, endless, and pollution‐free. Due to the fast growth of the semiconductor and power electronics sectors, photovoltaic (PV) technologies are climbing significant attention in modern electrical power applications. Operating PV energy conversion systems at the maximum power point is essential for getting the maximum power output and raising efficiency. This paper proposes a regression‐based Perturb and Observe method to quickly find a global maximum power point, avoiding being stuck in local maxima, likewise analytical and metaheuristic methods. The improved control focuses on the narrowed search areas by linear and non‐linear regression analyses using the generated PV model on a flexible Python environment. Furthermore, the method's accuracy is validated in real time under variable temperatures, irradiations, and loads. This method was proven with a hardware implementation. The proposed method is more than 98% accurate and can withstand long‐term modelling. The suggested regression‐based perturbation and observation method provided a short learning time and easy implementation. Additionally, the dynamic recorded results can be visualized for researchers to utilize efficiently.
TJ807-830, maximum power point trackers, regression analysis, solar photovoltaic systems, Renewable energy sources
TJ807-830, maximum power point trackers, regression analysis, solar photovoltaic systems, Renewable energy sources
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
