
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1049/qtc2.12060
AbstractIn the technologically changing world, the demand for ultra‐reliable, faster, low power, and secure communication has significantly risen in recent years. Researchers have shown immense interest in emerging quantum computing (QC) due to its potentials of solving the computing complexity in the robust and efficient manner. It is envisioned that QC can act as critical enablers and strong catalysts to considerably reduce the computing complexities and boost the future of sixth generation (6G) and beyond communication systems in terms of their security. In this study, the fundamentals of QC, the evolution of quantum communication that encompasses a wide spectrum of technologies and applications and quantum key distribution, which is one of the most promising applications of quantum security, have been presented. Furthermore, various parameters and important techniques are also investigated to optimise the performance of 6G communication in terms of their security, computing, and communication efficiency. Towards the end, potential challenges that QC and quantum communication may face in 6G have been highlighted along with future directions.
Computational Theory and Mathematics, Computer Networks and Communications, Telecommunication, 6G communication, quantum communication, TK5101-6720, Electrical and Electronic Engineering, quantum computing, Theoretical Computer Science, Computer Science Applications
Computational Theory and Mathematics, Computer Networks and Communications, Telecommunication, 6G communication, quantum communication, TK5101-6720, Electrical and Electronic Engineering, quantum computing, Theoretical Computer Science, Computer Science Applications
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
