Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Thermal energy storage

Thermal energy storage

Abstract

In this chapter, direct storage of heat in insulated solids or fluids is possible even at comparatively low temperatures (theoretically from t>0°C), but energy can only be recovered effectively as heat. Hot rocks and fireplace bricks have served as primitive heat storage devices from ancient times. This is still the case in industrial furnaces and in the baker's electric oven, where cheap electricity is used to heat the oven during the night. High temperature thermal storage can be used both to utilise heat in industrial processes and for heat engines. One recent example is the power supply for Stirling engines. Thermal energy storage (TES) is ideally suited for applications such as space heating, where low quality, low temperature energy is required, but it is also possible to use TES with conventional coaland nuclear-fired power plants which dominate the installed capacity of electricity utilities and are likely to continue to do so for the near future.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!