Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2009
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Green Chemistry
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The application of glutamic acid α-decarboxylase for the valorization of glutamic acid

Authors: Lammens, T.M.; De Biase, Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.;

The application of glutamic acid α-decarboxylase for the valorization of glutamic acid

Abstract

Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the decarboxylation of glutamic acid to γ-aminobutyric acid (GABA) is an important reaction. This reaction, catalyzed by the enzyme glutamic acid α-decarboxylase (GAD) was studied on a gram scale. In this study, GAD was immobilized on Eupergit and in calcium alginate and its operational stability was determined in a buffer free system, using various reactor configurations. Immobilization was shown to increase the GAD stability. The conditions for the highest GABA production per gram of enzyme were determined by extrapolation of enzyme stability data. At 30 °C in a fed batch process this results in an average volumetric productivity of 35 kg m−3 hr−1. The cost of using GAD immobilized in calcium alginate was estimated as €5 per metric ton of product. Furthermore it was shown that the cofactor pyridoxal-5′-phosphate (PLP) could be regenerated by the addition of a small amount of α-ketoglutaric acid to the reactor. In conclusion the application of immobilized GAD in a fed batch reactor was shown to be a scalable process for the industrial production of GABA from glutamic acid.

Keywords

gel, brain, amino-acids, distillers dried grains, gamma-aminobutyric-acid, solubles, corn, products, enzyme immobilization; fed batch process; gaba; glutamate decarboxylase, escherichia-coli, activation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!