
doi: 10.1039/b901623f
pmid: 19370195
In this communication we elucidate a microstructural picture of proton conduction in nano-crystalline yttria-stabilized zirconia at low temperatures (Kim et al. Adv. Mater., 2008, 20, 556). Based on careful analysis of electrical impedance spectra obtained from samples with grain sizes of approximately 13 and approximately 100 nm under both wet and dry atmospheres over a wide range of temperatures (room temperature-500 degrees C), we were able to identify the pathway for proton conduction in this material. It was found that the grain boundaries in nano-crystalline yttria-stabilized zirconia are highly selective for ion transport, being conductive for proton transport but resistive for oxygen-ion transport.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
