Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia

Authors: Sangtae, Kim; Hugo J, Avila-Paredes; Shizhong, Wang; Chien-Ting, Chen; Roger A, De Souza; Manfred, Martin; Zuhair A, Munir;

On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia

Abstract

In this communication we elucidate a microstructural picture of proton conduction in nano-crystalline yttria-stabilized zirconia at low temperatures (Kim et al. Adv. Mater., 2008, 20, 556). Based on careful analysis of electrical impedance spectra obtained from samples with grain sizes of approximately 13 and approximately 100 nm under both wet and dry atmospheres over a wide range of temperatures (room temperature-500 degrees C), we were able to identify the pathway for proton conduction in this material. It was found that the grain boundaries in nano-crystalline yttria-stabilized zirconia are highly selective for ion transport, being conductive for proton transport but resistive for oxygen-ion transport.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    100
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
100
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!