
AbstractDiscovery of novel phases and their associated transitions in low-dimensional nanoscale systems is of central interest as the origin of emergent phenomena and new device paradigms. Although typical ferroelectrics such as PbTiO3 exhibit diverse phase transition sequences, the conventional incompatible mechanisms of ferroelectricity and magnetism keep them as simply nonmagnetic phases, despite the immense practical prospective of multiferroics in novel functional devices. Here, we demonstrate using density function theory that PbTiO3 nanodots exhibit unconventional multiferroic phase transitions. The nanosize and nonstoichiometric effects intrinsic to nanodots bring about the coexistence of ferromagnetism with the host electric polarization, mediated by the termination and surface morphology. We also predict the key features of the size-dependent phase diagram of nanodots that involve a rich sequence of ferroelectric-multiferroic-ferromagnetic/nonmagnetic (FE-MF-FM/NM) multiferroic phase transitions. The present work thus provides an avenue to realizing multiferroics and multifunctional oxides in low-dimensional systems.
Electronic properties and materials, Nanoparticles, Article
Electronic properties and materials, Nanoparticles, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
