<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
While contrast normalization is well known to occur in luminance vision between overlaid achromatic contrasts, and in colour vision between overlaid colour contrasts, it is unknown whether it transfers between colour and luminance contrast. Here we investigate whether contrast detection in colour vision can be normalized by achromatic contrast, or whether this is a selective process driven only by colour contrast. We use a method of cross-orientation masking, in which colour detection is masked by cross-oriented achromatic contrast, over a range of spatio-temporal frequencies (0.375-1.5 cpd, 2-8 Hz). We find that there is virtually no cross-masking of colour by achromatic contrast under monocular or binocular conditions for any of the spatio-temporal frequencies tested, although we find significant facilitation at low spatio-temporal conditions (0.375 cpd, 2 Hz). These results indicate that the process of contrast normalization is colour selective and independent of achromatic contrast, and imply segregated chromatic signals in early visual processing. Under dichoptic conditions, however, we find a strikingly different result with significant masking of colour by achromatic contrast. This indicates that the dichoptic site of suppression is unselective, responding similarly to colour and luminance contrast, and suggests that dichoptic suppression has a different origin from monocular or binocular suppression.
Male, Pattern Recognition, Visual, Humans, Female, Article, Color Perception, Lighting
Male, Pattern Recognition, Visual, Humans, Female, Article, Color Perception, Lighting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |