Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Body fat mass and lean mass as predictors of survival in hemodialysis patients

Authors: Sawako Hatsuda; Eiji Ishimura; Hidenori Koyama; Noriyuki Tatsumi; Y. Nishizawa; Takuhito Shoji; Eiji Kimoto; +7 Authors

Body fat mass and lean mass as predictors of survival in hemodialysis patients

Abstract

A higher body mass index (BMI) is a predictor of better survival in hemodialysis patients, although the relative importance of body fat and lean mass has not been examined in the dialysis population. We performed an observational cohort study in 808 patients with end-stage renal disease on maintenance hemodialysis. At baseline, fat mass was measured by dual-energy X-ray absorptiometry and expressed as fat mass index (FMI; kg/m2). Lean mass index (LMI) was defined as BMI minus FMI. During the mean follow-up period of 53 months, 147 deaths, including 62 cardiovascular (CV) and 85 non-CV fatal events, were recorded. In univariate analysis, LMI was not significantly associated with CV or non-CV death, whereas a higher FMI was predictive of lower risk for non-CV death. Analyses with multivariate Cox models, which took other confounding variables as covariates, indicated the independent associations between a higher LMI and a lower risk of CV death, as well as between a higher FMI and a lower risk of non-CV death. These results indicate that increased fat mass and lean mass were both conditions associated with better outcomes in the dialysis population.

Keywords

Adult, Male, predictor, Protein-Energy Malnutrition, Absorptiometry, Photon, Predictive Value of Tests, Renal Dialysis, Risk Factors, lean mass, Body Fat Distribution, Humans, Aged, Proportional Hazards Models, Retrospective Studies, hemodialysis, Middle Aged, mortality, body fat, Adipose Tissue, Nephrology, Multivariate Analysis, Body Composition, Kidney Failure, Chronic, Female, Follow-Up Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 10%
Top 1%
Top 1%
hybrid