Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Reviews Metho...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Reviews Methods Primers
Article . 2021 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Small-angle X-ray and neutron scattering

Authors: Cy M. Jeffries; Jan Ilavsky; Anne Martel; Stephan Hinrichs; Andreas Meyer; Jan Skov Pedersen; Anna V. Sokolova; +1 Authors

Small-angle X-ray and neutron scattering

Abstract

Small-angle scattering (SAS) is a technique that is able to probe the structural organization of matter and quantify its response to changes in external conditions. X-ray and neutron scattering profiles measured from bulk materials or materials deposited at surfaces arise from nanostructural inhomogeneities of electron or nuclear density. The analysis of SAS data from coherent scattering events provides information about the length scale distributions of material components. Samples for SAS studies may be prepared in situ or under near-native conditions and the measurements performed at various temperatures, pressures, flows, shears or stresses, and in a time-resolved fashion. In this Primer, we provide an overview of SAS, summarizing the types of instrument used, approaches for data collection and calibration, available data analysis methods, structural information that can be obtained using the method, and data depositories, standards and formats. Recent applications of SAS in structural biology and the soft-matter and hard-matter sciences are also discussed. Small-angle scattering can reveal the structural organization of bulk materials and materials at surfaces and quantify their response to changes in external conditions. This Primer provides an overview of small-angle scattering using both X-rays and neutrons, and includes instrumentation, data collection and the type of structural information gathered in various applications.

Country
Germany
Keywords

info:eu-repo/classification/ddc/600

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 1%
Top 10%
Top 0.1%
Upload OA version
Are you the author? Do you have the OA version of this publication?