
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractThe Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft landed successfully on Mars and imaged the surface to characterize the surficial geology. Here we report on the geology and subsurface structure of the landing site to aid in situ geophysical investigations. InSight landed in a degraded impact crater in Elysium Planitia on a smooth sandy, granule- and pebble-rich surface with few rocks. Superposed impact craters are common and eolian bedforms are sparse. During landing, pulsed retrorockets modified the surface to reveal a near surface stratigraphy of surficial dust, over thin unconsolidated sand, underlain by a variable thickness duricrust, with poorly sorted, unconsolidated sand with rocks beneath. Impact, eolian, and mass wasting processes have dominantly modified the surface. Surface observations are consistent with expectations made from remote sensing data prior to landing indicating a surface composed of an impact-fragmented regolith overlying basaltic lava flows.
geology, 550, landing site, Science, General Physics and Astronomy, Mars, Genetics and Molecular Biology, Article, Planetenphysik, Planetary science, Traitement du signal et de l'image, InSight, Multidisciplinary, Q, Geomorphology, Geology, General Chemistry, Planetengeologie, General Biochemistry, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
geology, 550, landing site, Science, General Physics and Astronomy, Mars, Genetics and Molecular Biology, Article, Planetenphysik, Planetary science, Traitement du signal et de l'image, InSight, Multidisciplinary, Q, Geomorphology, Geology, General Chemistry, Planetengeologie, General Biochemistry, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 118 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
views | 21 | |
downloads | 13 |