Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2013 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Post-translational modifications and the Warburg effect

Authors: Jing Chen; Taro Hitosugi;

Post-translational modifications and the Warburg effect

Abstract

Post-translational modification (PTM) is an important step of signal transduction that transfers chemical groups such as phosphate, acetyl and glycosyl groups from one protein to another protein. As most of the PTMs are reversible, normal cells use PTMs as a 'switch' to determine the resting and proliferating state of cells that enables rapid and tight regulation of cell proliferation. In cancer cells, activation of oncogenes and/or inactivation of tumor suppressor genes provide continuous proliferative signals in part by adjusting the state of diverse PTMs of effector proteins that are involved in regulation of cell survival, cell cycle and proliferation, leading to abnormally fast proliferation of cancer cells. In addition to dysregulated proliferation, 'altered tumor metabolism' has recently been recognized as an emerging cancer hallmark. The most common metabolic phenotype of cancer is known as the Warburg effect or aerobic glycolysis that consists of increased glycolysis and enhanced lactate production even in the presence of oxygen. Although Otto Warburg observed aerobic glycolysis nearly 90 years ago, the detailed molecular mechanisms how increased glycolysis is regulated by oncogenic and/or tumor suppressive signaling pathways remain unclear. In this review, we summarize recent advances revealing how these signaling pathways reprogram metabolism through diverse PTMs to provide a metabolic advantage to cancer cells, thereby promoting tumor cell proliferation, tumorigenesis and tumor growth.

Related Organizations
Keywords

Carcinogenesis, Aerobiosis, Glucose, Neoplasms, Animals, Humans, Phosphorylation, Energy Metabolism, Glycolysis, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    119
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
119
Top 1%
Top 10%
Top 10%
bronze