
There is growing interest in using antibodies as auxiliary tools to crystallize proteins. Here we describe a general protocol for the generation of Nanobodies to be used as crystallization chaperones for the structural investigation of diverse conformational states of flexible (membrane) proteins and complexes thereof. Our technology has a competitive advantage over other recombinant crystallization chaperones in that we fully exploit the natural humoral response against native antigens. Accordingly, we provide detailed protocols for the immunization with native proteins and for the selection by phage display of in vivo-matured Nanobodies that bind conformational epitopes of functional proteins. Three representative examples illustrate that the outlined procedures are robust, making it possible to solve by Nanobody-assisted X-ray crystallography in a time span of 6-12 months.
Models, Molecular, Camelus, Protein Conformation, Single-Domain Antibodies, nanobodies, Animals, Cloning, Molecular, Cell Surface Display Techniques, Crystallization, Biotechnology, DNA Primers
Models, Molecular, Camelus, Protein Conformation, Single-Domain Antibodies, nanobodies, Animals, Cloning, Molecular, Cell Surface Display Techniques, Crystallization, Biotechnology, DNA Primers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 686 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
