
doi: 10.1038/nmeth.3764
pmid: 26878383
NADPH-dependent antioxidant pathways have a critical role in scavenging hydrogen peroxide (H2O2) produced by oxidative phosphorylation. Inadequate scavenging results in H2O2 accumulation and can cause disease. To measure NADPH/NADP(+) redox states, we explored genetically encoded sensors based on steady-state fluorescence anisotropy due to FRET (fluorescence resonance energy transfer) between homologous fluorescent proteins (homoFRET); we refer to these sensors as Apollo sensors. We created an Apollo sensor for NADP(+) (Apollo-NADP(+)) that exploits NADP(+)-dependent homodimerization of enzymatically inactive glucose-6-phosphate dehydrogenase (G6PD). This sensor is reversible, responsive to glucose-stimulated metabolism and spectrally tunable for compatibility with many other sensors. We used Apollo-NADP(+) to study beta cells responding to oxidative stress and demonstrated that NADPH is significantly depleted before H2O2 accumulation by imaging a Cerulean-tagged version of Apollo-NADP(+) with the H2O2 sensor HyPer.
Protein Conformation, Fluorescence Polarization, Biosensing Techniques, Hydrogen Peroxide, Glucosephosphate Dehydrogenase, Oxidants, Oxidative Stress, Insulin-Secreting Cells, Fluorescence Resonance Energy Transfer, Image Processing, Computer-Assisted, Humans, Cells, Cultured, NADP
Protein Conformation, Fluorescence Polarization, Biosensing Techniques, Hydrogen Peroxide, Glucosephosphate Dehydrogenase, Oxidants, Oxidative Stress, Insulin-Secreting Cells, Fluorescence Resonance Energy Transfer, Image Processing, Computer-Assisted, Humans, Cells, Cultured, NADP
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 111 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
