Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cerebral ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Proteome of Mouse Cerebral Arteries

Authors: Badhwar, A.; Stanimirovic, D.B.; Hamel, E.; Haqqani, A.S.;

The Proteome of Mouse Cerebral Arteries

Abstract

The cerebral vasculature ensures proper cerebral function by transporting oxygen, nutrients, and other substances to the brain. Distribution of oxygenated blood throughout the neuroaxis takes place at the level of the circle of Willis (CW). While morphologic and functional alterations in CW arteries and its main branches have been reported in cerebrovascular and neurodegenerative diseases, accompanying changes in protein expression profiles remain largely uncharacterized. In this study, we performed proteomics to compile a novel list of proteins present in mouse CW arteries and its ramifications. Circle of Willis arteries were surgically removed from 6-month-old wild-type mice, proteins extracted and analyzed by two proteomics approaches, gel-free nanoLC-mass spectrometry (MS)/MS and gel-based GelLC-MS/MS, using nanoAcquity UPLC coupled with ESI-LTQ Orbitrap XL. The two approaches helped maximize arterial proteome coverage. Six biologic and two technical replicates were performed. In all, 2,188 proteins with at least 2 unique high-scoring peptides were identified (6,630 proteins total). Proteins were classified according to vasoactivity, blood–brain barrier specificity, tight junction and adhesion molecules, membrane transporters/channels, and extracellular matrix/basal lamina proteins. Furthermore, we compared the identified CW arterial proteome with the published brain microvascular proteome. Our database provides a vital resource for the study of CW cerebral arterial protein expression profiles in health and disease.

Keywords

tight junction protein, brain artery, Male, Proteomics, brain circulus arteriosus, ultra performance liquid chromatography, Proteome, proteome, blood vessel reactivity, blood brain barrier, protein database, Mass Spectrometry, animal tissue, Mice, proteomics, male, tandem mass spectrometry, Animals, membrane protein, protein expression, artery wall, mouse, scleroprotein, nucleotide sequence, protein function, Cerebral Arteries, basement membrane, amino acid sequence, carrier protein, unindexed sequence, protein analysis, Blood-Brain Barrier, protein isolation, mass spectrometer, wild type, cell adhesion molecule

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
bronze