Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1991
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2

Authors: E, Bailly; M, McCaffrey; N, Touchot; A, Zahraoui; B, Goud; M, Bornens;

Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2

Abstract

Entry of a cell into mitosis induces a series of structural and functional changes including arrest of intracellular transport. Knowledge of how the mitotic cycle is driven progressed substantially with the identification of the p34cdc2 protein kinase as a subunit of maturation-promoting factor, the universal regulating component of the mitotic cycle. Activation of the kinase at the onset of mitosis is thought to trigger the important mitotic events by phosphorylating key proteins. Small guanine nucleotide-binding proteins have been implicated in regulating transport pathways. For instance, two small Ras-related GTP-binding proteins, Sec4p and Ypt1p, control distinct stages of the secretory pathway in budding yeast. The GTP-binding proteins of the Rab family in rats and humans display strong homologies with Sec4p and Ypt1p, and might therefore also be involved in regulating intracellular transport. Indeed, distinct Rab proteins are located in the exocytotic and endocytotic compartments. Interruption of vesicular transport during mitosis might involve modification of these proteins. We now present biochemical evidence for a mitosis-specific p34cdc2 phosphorylation of Rab1Ap and Rab4p. By contrast, Rab2p and Rab6p are not phosphorylated. We also show that the distribution of Rab1Ap and Rab4p between cytosolic and membrane-bound forms is different in interphase and mitotic cells. This may provide a clue to the mechanism by which phosphorylation could affect membrane traffic during mitosis.

Keywords

Molecular Weight, GTP-Binding Proteins, Sequence Homology, Nucleic Acid, CDC2 Protein Kinase, Molecular Sequence Data, Humans, Mitosis, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Phosphorylation, Interphase, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!