Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1979 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1979
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduced thermogenesis in obesity

Authors: R T, Jung; P S, Shetty; W P, James; M A, Barrand; B A, Callingham;

Reduced thermogenesis in obesity

Abstract

IT is often claimed that there are obese patients who find it difficult to maintain a normal body weight because they have such low energy requirements that even normal intakes of energy result in weight gain and obesity. Studies of both children1 and adults2 show that there can be a twofold difference in energy intake between individuals despite apparently similar patterns of physical activity. An individual variability in the capacity to dissipate heat by metabolic changes has therefore been suggested3 but no physiological basis for the differences in thermogenesis has yet been established. In genetically obese ob/ob mouse there are two components involved in the deposition of excess body fat: hyperphagia and increased metabolic efficiency4,5. Metabolic efficiency is the major factor responsible for obesity when the animals are kept at 20 °C so these animals provide a model study of the link between metabolic rate and obesity. Pre-obese and obese ob/ob animals have an abnormality of thermoregulatory thermogenesis with a reduced thermogenic response to cooling6. A defect in non-shivering thermogenesis can be confirmed by monitoring the thermogenic response to maximum doses of nor adrenaline: the ob/ob mouse has only half the response of its lean littermate. The abnormal thermoregulatory thermogenesis quantitatively accounts for most of the metabolic efficiency of the obese animals as pair feeding at thermoneutrality rather than at 23 °C reduces the excess fat deposited by 65%7. We report here that obese adults with a family history of obesity have a reduced metabolic response to noradrenaline infusion compared with thin adults. As the reduced non-shivering thermogenesis is also found in subjects with familial obesity who remain at normal weight by persistent dieting, the defect in non-shivering thermogenesis appears to be constitutional and not a secondary consequence of obesity.

Keywords

Adult, Blood Glucose, Lipid Mobilization, Fatty Acids, Nonesterified, Middle Aged, Norepinephrine, Adipose Tissue, Brown, Humans, Insulin, Female, Obesity, Energy Metabolism, Body Temperature Regulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    371
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
371
Top 1%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!