
pmid: 15149254
Speeded visual word naming and lexical decision performance are reported for 2428 words for young adults and healthy older adults. Hierarchical regression techniques were used to investigate the unique predictive variance of phonological features in the onsets, lexical variables (e.g., measures of consistency, frequency, familiarity, neighborhood size, and length), and semantic variables (e.g. imageahility and semantic connectivity). The influence of most variables was highly task dependent, with the results shedding light on recent empirical controversies in the available word recognition literature. Semantic-level variables accounted for unique variance in both speeded naming and lexical decision performance, level with the latter task producing the largest semantic-level effects. Discussion focuses on the utility of large-scale regression studies in providing a complementary approach to the standard factorial designs to investigate visual word recognition.
Adult, Male, Reaction Time, Visual Perception, Humans, Female, Recognition, Psychology, Fixation, Ocular, Vocabulary, Aged
Adult, Male, Reaction Time, Visual Perception, Humans, Female, Recognition, Psychology, Fixation, Ocular, Vocabulary, Aged
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 710 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
