Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 1975 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The thickness distribution of sea ice

Authors: A. S. Thorndike; D. A. Rothrock; G. A. Maykut; R. Colony;

The thickness distribution of sea ice

Abstract

The polar oceans contain sea ice of many thicknesses ranging from open water to thick pressure ridges. Since many of the physical properties of the ice depend upon its thickness, it is natural to expect its large-scale geophysical properties to depend on the relative abundance of the various ice types. The ice pack is treated as a mixture whose constituents are determined by their thickness and whose composition is determined by the area covered by each constituent. A dimensionless function g(h), the ice thickness distribution, is defined such that g(h) dh is the fraction of a given area covered by ice of thickness greater than h but less than h + dh. A theory is developed to explain how the ice thickness distribution changes in response to thermal and mechanical forcing. The theory models the changes in thickness due to melting and freezing and the rearrangement of existing ice to form leads and pressure ridges. In its present form the model assumes as inputs a growth rate function and the velocity field of the ice pack. The model is tested using strain data derived from the positions of three simultaneous manned drifting stations in the central Arctic during the period 1962–1964 and growth rates inferred from climatological heat flux averages. The results are compared with estimates of g based on submarine measurements of ice thickness.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    577
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
577
Top 1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!