Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 1991 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plasma waves in planetary magnetospheres

Authors: D. A. Gurnett; William S. Kurth;

Plasma waves in planetary magnetospheres

Abstract

With the completion of the Voyager 2 encounter with Neptune we have now surveyed the plasma wave spectra of five planetary magnetospheres: Earth, Jupiter, Saturn, Uranus, and Neptune. Here we provide a first general comparison of the various plasma wave modes at each of the planets with the use of a common format for displaying the spectra. The general conclusions are that many of the same types of wave modes are present in each of the magnetospheres, despite great differences in the magnetospheres' sizes, heliocentric distances, energy sources, plasma sources, and magnetic dipole orientations. There are, however, great differences in the relative and absolute intensity of some of the wave modes. Virtually ubiquitous in planetary magnetospheres are electron cyclotron harmonic bands and whistler mode emissions such as hiss and chorus. Ion cyclotron harmonic emissions have been observed where the observed local magnetic field strength was great enough to move these low‐frequency waves into the Voyager plasma wave receiver's frequency range. Broadband electrostatic noise has also been observed in the majority of the magnetospheres. In addition to a general survey of the magnetospheric wave modes, an initial assessment of the role of plasma waves in the precipitation of charged particles is presented. Waves seem to have obvious contributions in this aspect for Earth, Jupiter, and Uranus. Weaker wave amplitudes observed at Saturn and Neptune may possibly be due to the specific geometry of the flybys or to quiescent states of the magnetospheres during the encounters.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?