Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Observing Waves in Sea Ice With ICESat‐2

Authors: C. Horvat; Ed Blanchard‐Wrigglesworth; A. Petty;

Observing Waves in Sea Ice With ICESat‐2

Abstract

AbstractThe coupled interaction of ocean surface waves and sea ice is important in determining the thermodynamic and dynamic properties of sea ice and its relationship to the ocean and atmosphere. Wave‐ice interactions create the marginal ice zone (MIZ), a region critically important for ecology, transportation, and the polar energy budget. Typically, the MIZ is defined using satellite products as those regions where sea ice concentration is between 15% and 80%. Here we present a new technique to observe ocean surface waves in sea ice, leveraging NASA's ICESat‐2 satellite laser altimeter, and produce maps of wave‐affected sea ice regions in both hemispheres. Defining a new wave‐based metric for MIZ extent, we find that compared to a concentration‐based metric, wave‐based MIZ estimates are smaller. Further, the wave‐affected MIZ makes up a larger fraction of sea ice extent in winter than in summer, opposite to the seasonal cycle of concentration‐based MIZ.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 1%
gold