<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1029/2008je003185
Images obtained from the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS)‐M instrument onboard Venus Express present visible trains of alternating bands of cloud brightness in two different layers: at the upper cloud tops (∼66 km altitude) observed in the dayside hemisphere using reflected ultraviolet light (380 nm) and in the lower cloud (∼47 km altitude) observed in the nightside hemisphere using thermal radiation (1.74 μm). The waves are nearly zonal (with the bands perpendicular to latitude circles), have wavelengths of 60–150 km, propagate westward with low phase velocities relative to the zonal flow, and are confined in wave packets of 400 to 1800 km in length. The waves in the lower cloud observed in the infrared are widely distributed around the planet, and their appearance varies widely throughout the VIRTIS data set. The locations of both types of waves seem not correlated with latitude, local times, surface topography, or the structure of the wind. In both cases the characteristics of the waves correspond to gravity waves propagating in confined stable layers of the atmosphere. We examine the properties of these waves in terms of a linear model and perform a simple analysis to discuss the vertical stability of the atmosphere within Venus clouds.
550, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], 530
550, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], 530
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |