Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relating arctic pack ice stress and deformation under winter conditions

Authors: S. Lyn McNutt; James E. Overland; Jacqueline A. Richter-Menge; Ron Kwok;

Relating arctic pack ice stress and deformation under winter conditions

Abstract

Together, thermodynamic and dynamic processes determine the thickness distribution of the ice cover on polar oceans, which governs the exchange of energy between the atmosphere and the ocean. Key to the dynamic processes is the mechanical behavior of the ice cover. During the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment, we deployed sensors to measure the internal ice stress at several locations within a 15 × 15 km area. These measurements are combined with satellite‐derived ice motion and imagery products. The objective is to make a first step toward using these data sources for evaluating sea ice dynamics models by assessing whether the stress signal can be qualitatively linked to the regional‐scale (10–100 km) deformation activity. Four case studies are presented, each with distinguishing characteristics: consolidation of the seasonal ice zone against the Alaskan coast (5–7 December 1997); advancement of the consolidation zone into the perennial ice pack (11–13 December); extreme divergence (14–17 January); and consolidation of the pack against Wrangel Island and the Siberian coast (20–23 February). The results of this analysis (1) demonstrate that stress measurements are related to the regional deformation behavior of the ice cover, (2) confirm that regional‐scale ice dynamics is primarily a function of coastal geometry and sustained, large‐scale wind direction and magnitude, (3) provide continued evidence that the ice pack behaves as a granular hardening plastic, and (4) encourage pursuit of efforts to use direct measurements of ice stress and deformation in the formulation and development of sea ice dynamics models.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
bronze