
Theoretical models of star formation from the collapse of molecular cloud cores have been evolving in complexity for many years. This work describes the evolution of models from the nonrotating, nonmagnetized singular isothermal sphere to rotating, magnetized singular isothermal toroids. Four members of the same family are studied–the four combinations of nonrotation/rotation and nonmagnetization/magnetization. It is found that although rotation alone can hinder collapse to a pointmass, addition of braking from a magnetic field can transport away much of the angular momentum upward in a low-velocity outflow during the collapse phase. For all magnetized cases, accretion proceeds at a constant rate similar to that of the isothermal sphere.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
