Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Astrophysics and Spa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astrophysics and Space Science
Article . 2004 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Starburst galaxies – An observer’s view

Authors: M. Dahlem;

Starburst galaxies – An observer’s view

Abstract

Starbursts are the most efficient producers of metals in the Universe at low redshifts. They produce enough energy to drive outflows of material from their disks. This makes them important objects to study in order to understand the chemical evolution not only of the interstellar medium (ISM) in the starburst galaxies themselves, but also of the intergalactic medium (IGM) in their vicinity. However, several key quantities of starbursts that are needed as input to models of their ISM are still ill-constrained. Some of these critical parameters are e.g. the metal abundances of hot ionized gas, the ionization state of warm ionized gas, the amount of energy deposited into the ambient by a starburst, the efficiency of its conversion into mechanical energy and thus the total kinetic energy of the star formation-driven outflows and their kinematics. The latter are important when considering under which circumstances matter energized by a starburst will reach the so-called ‘blowout’ condition, i.e. supersede the threshold energy starting at which local energy injection into the ISM can drive an outflow first into the halo (where metal re-distribution might be very efficient) and eventually out into intergalactic space. I will discuss here a few of these quantities, how we can measure them better than in the past, and in which way some of our observing techniques need to be improved in order to obtain better constraints from the data.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!