Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ukrainian Mathematic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ukrainian Mathematical Journal
Article . 2002 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Singularities of Solutions of Singular Integral Equations

Singularities of solutions of singular integral equations
Authors: V. E. Kapustyan; V. M. Il'man;

Singularities of Solutions of Singular Integral Equations

Abstract

This paper deals with a singular integral equation \[ Sq+Tq=f,\tag{1} \] where \(q(x)\) is an unknown function, \[ Sq(x):=aq(x)+\frac{1}{\pi }\text{v.p.} \int_{-1}^{1} \frac{q(\tau)}{\tau -x} d\tau,\;Tq(x):=\int_{-1}^{1}K(x,\tau)q(\tau) d\tau. \] It is assumed that the functions \(f\) and \(K\) smoothly depend on additional parameters. The problem is to study interrelations between singularities of solutions to (1) and those of families \(f, K\) [see \textit{V. I. Arnol'd, A. N. Varchenko} and \textit{S. M. Gusejn-Zade}, Singularities of differentiable mappings. Classification of critical points, caustics and wave fronts. (Russian) Moskva: ``Nauka'' Glavnaya Redaktsiya Fiziko-Matematicheskoj Literatury (1982; Zbl 0513.58001)]. For this purpose a notion of differentiable equivalence of integral operators is introduced. For equation (1) the authors establish how do the singularity types of its solutions depend on the dimension of families \(f\) and \(K\).

Related Organizations
Keywords

Critical points of functions and mappings on manifolds, singularity of solution, singular integral operator, bifurcation manifold, equivalence of operators, Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type), Fredholm operator, Singularities of differentiable mappings in differential topology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!