Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genetic Programming ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetic Programming and Evolvable Machines
Article . 2001 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exact Schema Theory for Genetic Programming and Variable-Length Genetic Algorithms with One-Point Crossover

Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover
Authors: Riccardo Poli;

Exact Schema Theory for Genetic Programming and Variable-Length Genetic Algorithms with One-Point Crossover

Abstract

Summary: A few schema theorems for genetic programming (GP) have been proposed in the literature in the last few years. Since they consider schema survival and disruption only, they can only provide a lower bound for the expected value of the number of instances of a given schema at the next generation rather than an exact value. This paper presents theoretical results for GP with one-point crossover which overcome this problem. First, we give an exact formulation for the expected number of instances of a schema at the next generation in terms of microscopic quantities. Due to this formulation we are then able to provide an improved version of an earlier GP schema theorem in which some (but not all) schema creation events are accounted for. Then, we extend this result to obtain an exact formulation in terms of macroscopic quantities which makes all the mechanisms of schema creation explicit. This theorem allows the exact formulation of the notion of effective fitness in GP and opens the way to future work on GP convergence, population sizing, operator biases, and bloat, to mention only some of the possibilities.

Related Organizations
Keywords

Other programming paradigms (object-oriented, sequential, concurrent, automatic, etc.), Computing methodologies and applications, Learning and adaptive systems in artificial intelligence, variable-length genetic algorithms, genetic programming, schema theory, one-point crossover

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!