Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Siberian Mathematica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Siberian Mathematical Journal
Article . 2001 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Poisson Approximation of the Binomial Distribution

On the Poisson approximation of the binomial distribution
Authors: P. S. Ruzankin;

On the Poisson Approximation of the Binomial Distribution

Abstract

Given two arbitrary probability distributions \(P\) and \(Q\) on the real line and an arbitrary nonnegative constant \(z\), denote by \(\rho(z,P,Q)\) the so-called Dudley distance between \(P\) and \(Q\): \[ \rho(z,P,Q)=\inf_{\xi,\eta}\mathbf{P}\{|\xi-\eta|>z\}, \] where the infimum is calculated over all random variables \(\xi\) and \(\eta\) on a common probability space with distributions \(P\) and \(Q\), respectively. Let \(P\) be the binomial distribution with parameters \(n\) and \(p\) and let \(Q\) be the Poisson distribution with parameter \(\lambda=np\). The main result of the article states that for all \(p\leq 1/2\) and integer \(z\geq 1\) the following estimates hold: \[ \begin{aligned} \rho(z,P,Q) \exp\Biggl\{-4\sqrt{nz\Bigl(\log \frac{z}{np^2}+4\Bigr)^3}\Biggr\} \quad \text{ if } p\leq\frac{1}{10} \;\text{ and } np^2\leq z\leq\frac{n}{10\log\frac{1}{p}} . \]

Keywords

Central limit and other weak theorems, Dudley distance, estimates for the Poisson approximation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!