Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2014
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2014
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Macromolecules
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photoresponsive Supramolecular Architectures Based on Polypeptide Hybrids

Authors: MAZZIER, DANIELA; M. Maran; O. P. Perucchin; CRISMA, MARCO; ZERBETTO, MIRCO; CAUSIN, VALERIO; TONIOLO, CLAUDIO; +1 Authors

Photoresponsive Supramolecular Architectures Based on Polypeptide Hybrids

Abstract

Self-aggregation has recently emerged as an efficient tool for the production of well-ordered supramolecular structures at the nanometric scale. In this framework, peptides offer important advantages as building blocks because of their biocompatibility and 3D-structural/functional diversities. The chemical diversity of peptides may be further expanded by use of noncoded amino acids. In the present work, we focused our attention on two known photoswitchable azobenzene-containing alpha-amino acids and used them as initiators for the reversible modulation of the cis/trans conformational states of two poly(gamma-benzyl-L-glutamate)-based hybrid molecules with either C2 or C3 symmetry. The microscopic photoresponsive self-assembly of these compounds was examined in detail. Moreover, these hybrids were exploited in the construction of macroscopic supramolecular architectures via the electrospinning technique. Finally, after appropriate thiol functionalization, we fabricated and characterized dimeric and trimeric gold nanoparticle/polypeptide hybrid systems.

Country
Italy
Keywords

Photo-responsive; Supramolecular architectures; peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?