<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/jp301337f
pmid: 22835039
Lu(3)Al(5)O(12) (LuAG) doped with Ce(3+) is a promising scintillator material with a high density and a fast response time. The light output under X-ray or γ-ray excitation is, however, well below the theoretical limit. In this paper the influence of codoping with Tb(3+) is investigated with the aim to increase the light output. High resolution spectra of singly doped LuAG (with Ce(3+) or Tb(3+)) are reported and provide insight into the energy level structure of the two ions in LuAG. For Ce(3+) zero-phonon lines and vibronic structure are observed for the two lowest energy 5d bands and the Stokes' shift (2 350 cm(-1)) and Huang-Rhys coupling parameter (S = 9) have been determined. Tb(3+) 4f-5d transitions to the high spin (HS) and low spin (LS) states are observed (including a zero-phonon line and vibrational structure for the high spin state). The HS-LS splitting of 5400 cm(-1) is smaller than usually observed and is explained by a reduction of the 5d-4f exchange coupling parameter J by covalency. Upon replacing the smaller Lu(3+) ion with the larger Tb(3+) ion, the crystal field splitting for the lowest 5d states increases, causing the lowest 5d state to shift below the (5)D(4) state of Tb(3+) and allowing for efficient energy transfer from Tb(3+) to Ce(3+) down to the lowest temperatures. Luminescence decay measurements confirm efficient energy transfer from Tb(3+) to Ce(3+) and provide a qualitative understanding of the energy transfer process. Co-doping with Tb(3+) does not result in the desired increase in light output, and an explanation based on electron trapping in defects is discussed.
Luminescence, Energy Transfer, Luminescent Measurements, Aluminum Oxide, Cerium, Lutetium, Terbium
Luminescence, Energy Transfer, Luminescent Measurements, Aluminum Oxide, Cerium, Lutetium, Terbium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 104 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |