<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/jf103473d
pmid: 21261252
We studied gliadin solubility, surface tension and foam behavior, and the presence of different gliadin types in gliadin aqueous solutions and foams as a function of pH. Gliadin has excellent foaming properties only at neutral and alkaline pH. Its solubility is minimal near neutral pH, while almost complete at acidic and alkaline pH. Surface tensions of gliadin solutions are minimal around neutral pH, higher at alkaline pH, and highest at acidic pH, which corresponds well with their respective foaming properties. Foams at acidic and alkaline pH values are enriched in γ-gliadin, while foams at pH 8.0 have a similar distribution of α- and γ-gliadins. Thus, γ-gliadin predominantly contributes to the foaming properties of gliadin. The poor foaming properties of gliadin at pH 2.0 improve in the presence of 0.25 and 1.0% NaCl. It follows that the presence of positively charged amino acid residues hinders the formation of stable foam at acidic pH.
Chemical Phenomena, Solubility, Surface Tension, Hydrogen-Ion Concentration, Sodium Chloride, Gliadin, Triticum
Chemical Phenomena, Solubility, Surface Tension, Hydrogen-Ion Concentration, Sodium Chloride, Gliadin, Triticum
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |