Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Chemical Society
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polymer Mechanochromism from Force-Tuned Excited-State Intramolecular Proton Transfer

Authors: Huan Hu; Xin Cheng; Zhimin Ma; Rint P. Sijbesma; Zhiyong Ma;

Polymer Mechanochromism from Force-Tuned Excited-State Intramolecular Proton Transfer

Abstract

Real-time monitoring of strain/stress in polymers is a big challenge to date. Herein, we for the first time report an ESIPT (excited-state intramolecular proton transfer)-based mechanochromic mechanophore (MM). The synthesis of target MM PhMz-4OH [(2-hydroxyphenyl)benzimidazole with four aliphatic hydroxyls] is quite facile. PhMz-4OH possesses characteristic dual emissions, and its ESIPT activity is greatly affected by steric hindrance. Then, PhMz-4OH was covalently linked into polyurethane chains (PhMz-4OH@PU). Upon stretching, the PhMz-4OH@PU films showed fluorescence color change and spectral variation with the increase in enol emission and blueshift of keto emission due to the force-induced torsion of the dihedral angle between the proton donor and the proton acceptor. The PhMz-4OH@PU films with high mechanophore concentrations (>0.36 mol %) might undergo a two-stage force-responsive process, including torsion of the dihedral angle via force-induced disaggregation and direct chain-transduced force-induced torsion of the dihedral angle. The intensity ratio of enol emission to keto emission (IE/IK) shows a quantitative correlation with elongation, and real-time strain sensing is achieved. PhMz-4OH is a successful type II MM (without covalent bond scission) and displays high sensitivity and excellent reversibility to stress. Two control structures PhMz-NH2 and PhMz-2OH were also embedded into PU but no spectral or color changes were detected, further confirming that mechanochromism of PhMz-4OH@PU films arises from the chain-transduced force. Density function theory (DFT) calculation was performed to study the force-tuned ESIPT process theoretically and rationalize the experimental results. This study might lay the foundation for real-time stress/strain sensing in practical applications.

Country
Netherlands
Related Organizations
Keywords

Polymers, Protons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 1%
hybrid