Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photocontrol of DNA Binding Specificity of a Miniature Engrailed Homeodomain

Authors: Lucia, Guerrero; Oliver S, Smart; G Andrew, Woolley; Rudolf K, Allemann;

Photocontrol of DNA Binding Specificity of a Miniature Engrailed Homeodomain

Abstract

Control of DNA binding of HDH-3, a 18-residue polypeptide based on the recognition helix of the Q50K engrailed homeodomain, has been achieved. HDH-3 was linked to an azobenzene cross-linker through two cysteine residues in an i, i + 11 spacing. For the thermodynamically stable trans configuration of the cross-linker, the dark-adapted peptide (dad-HDH-3) adopted a mainly alpha-helical structure as judged by circular dichroism (CD) spectroscopy. After irradiation with light of 360 nm, the helical content of the peptide (irrad-HDH-3) was reduced significantly and the CD spectrum of the irradiated peptide resembled that of the largely unstructured, unalkylated peptide. Despite lacking helices-1 and -2 and the N-terminal arm of Q50K engrailed, dad-HDH-3 bound to its natural DNA target sequence TAATCC (QRE) with high affinity (K(D) = 7.5 +/- 1.3 nM). The binding affinity for the mutant DNA sequence, TAATTA (ERE), was reduced significantly (K(D) = 140 +/- 11 nM). Unlike irrad-HDH-3, which like the unalkylated parent peptide displayed only marginal DNA binding specificity, dad-HDH-3 specified base pairs 5 and 6 of QRE with an accuracy rivaling that of the intact wild-type Q50K engrailed homeodomain, making dad-HDH-3 the most specific designed DNA binding miniature homeodomain reported to date. Moreover, DNA binding affinity and specificity of HDH-3 could be controlled externally by irradiation with light.

Related Organizations
Keywords

DNA-Binding Proteins, Homeodomain Proteins, Cross-Linking Reagents, Photochemistry, Circular Dichroism, Fluorescence Polarization, DNA, Peptides, Azo Compounds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!