
doi: 10.1021/acsami.2c02520 , 10.34961/researchrepository-ul.22134221.v1 , 10.34961/researchrepository-ul.22134221
pmid: 35786845
pmc: PMC9305716
handle: 10344/11262
doi: 10.1021/acsami.2c02520 , 10.34961/researchrepository-ul.22134221.v1 , 10.34961/researchrepository-ul.22134221
pmid: 35786845
pmc: PMC9305716
handle: 10344/11262
Photocatalytic H2 generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta2O5/SrZrO3 heterostructure with Ru and Cu (RuO2/CuxO/Ta2O5/SrZrO3) using solid-state chemistry methods to achieve a high H2 production of 5164 μmol g−1 h−1 under simulated solar light, 39 times higher than that produced using SrZrO3. The heterostructure performance is compared with other Ta2O5/SrZrO3 heterostructure compositions loaded with RuO2, CuxO, or Pt. CuxO is used to showcase the usage of less costly cocatalysts to produce H2. The photocatalytic activity toward H2 by the RuO2/CuxO/Ta2O5/SrZrO3 heterostructure remains the highest, followed by RuO2/Ta2O5/SrZrO3 > CuxO/ Ta2O5/SrZrO3 > Pt/Ta2O5/SrZrO3 > Ta2O5/SrZrO3 > SrZrO3. Band gap tunability and high optical absorbance in the visible region are more prominent for the heterostructures containing cocatalysts (RuO2 or CuxO) and are even higher for the binary catalyst (RuO2/CuxO). The presence of the binary catalyst is observed to impact the charge carrier transport in Ta2O5/SrZrO3, improving the solar to hydrogen conversion efficiency.The results represent a valuable contribution to the design of SrZrO3-based heterostructures for photocatalytic H2 production by solar water splitting.
CuxO, photocatalyst, UT-Hybrid-D, SrZrO3, hydrogen evolution, Chemical sciences, CuxOS, FOS: Chemical sciences, band alignment, RuO2, Ta2O5, oxide heterostructure, SDG 7 - Affordable and Clean Energy, SrZrO
CuxO, photocatalyst, UT-Hybrid-D, SrZrO3, hydrogen evolution, Chemical sciences, CuxOS, FOS: Chemical sciences, band alignment, RuO2, Ta2O5, oxide heterostructure, SDG 7 - Affordable and Clean Energy, SrZrO
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
