Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Physical Chemistry C
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.29363/nanog...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers

Authors: Chenghui Xia; Wentao Wang; Liang Du; Freddy T. Rabouw; Dave J. van den Heuvel; Hans C. Gerritsen; Hedi Mattoussi; +1 Authors

Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers

Abstract

Förster resonance energy transfer (FRET) using colloidal semiconductor quantum dots (QDs) and dyes is of importance in a wide range of biological and biophysical studies. Here, we report a study on FRET between CuInS2/ZnS QDs and dark quencher dye molecules (IRDye QC-1). Oleate-capped QDs with photoluminescence quantum yields (PLQYs) of 55 ± 4% are transferred into water by using two types of multifunctional polymer ligands combining imidazole groups and specific moieties with amine or methoxy groups as the terminal sites. The resulting water-dispersible QDs show PLQYs as high as 44 ± 4% and exhibit long-term colloidal stability (at least 10 months at 4 °C in the dark) with a hydrodynamic diameter of less than 20 nm. A side-by-side comparison experiment was performed using the amine or methoxy-functionalized QDs for coupling to dark quencher dye molecules. The amine-functionalized QDs bind to the dye molecules via covalent bonds, while methoxy-functionalized ones bind only weakly and nonspecifically. The progressive quenching of the QD emission and shortening of its photoluminescence decay time upon increasing the number of conjugated dye molecules demonstrate that the QD acts as the energy donor and the dark quencher dye as the energy acceptor in a donor-acceptor FRET pair. The FRET dynamics of the QD-dye conjugates are simulated using two different models based on the possible origin of the multiexponential PL decay of the QDs (i.e., variations in nonradiative or radiative decay rates). The model based on the radiative decay rates provides a better fit of our experimental data and estimates a donor-acceptor distance (6.5 nm) that matches well the hydrodynamic radius of the amine-functionalized QDs.

Country
Netherlands
Keywords

General Energy, Physical and Theoretical Chemistry, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Green
hybrid