
AbstractWe outline an intuitionistic view of knowledge which maintains the original Brouwer–Heyting–Kolmogorov semantics for intuitionism and is consistent with the well-known approach that intuitionistic knowledge be regarded as the result of verification. We argue that on this view coreflectionA→KAis valid and the factivity of knowledge holds in the formKA→ ¬¬A‘known propositions cannot be false’.We show that the traditional form of factivityKA→Ais a distinctly classical principle which, liketertium non datur A∨ ¬A, does not hold intuitionistically, but, along with the whole of classical epistemic logic, is intuitionistically valid in its double negation form ¬¬(KA¬A).Within the intuitionistic epistemic framework the knowability paradox is resolved in a constructive manner. We argue that this paradox is the result of an unwarranted classical reading of constructive principles and as such does not have the consequences for constructive foundations traditionally attributed it.
03B20, 03B42, FOS: Mathematics, Mathematics - Logic, Logic (math.LO)
03B20, 03B42, FOS: Mathematics, Mathematics - Logic, Logic (math.LO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
