
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractThis paper gives an brief overview of the structure of hypothetical strange quarks stars (quark stars, for short), which are made of absolutely stable 3-flavor strange quark matter. Such objects can be either bare or enveloped in thin nuclear crusts, which consist of heavy ions immersed in an electron gas. In contrast to neutron stars, the structure of quark stars is determined by two (rather than one) parameters, the central star density and the density at the base of the crust. If bare, quark stars possess ultra-high electric fields on the order of 1018 to 1019 V/cm. These features render the properties of quark stars more multifaceted than those of neutron stars and may allow one to observationally distinguish quark stars from neutron stars.
quark stars, Ciencias Astronómicas, Nuclear Theory, strange quark matter, FOS: Physical sciences, neutron stars, Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Astrophysics - Solar and Stellar Astrophysics, pulsars, equation of state, Solar and Stellar Astrophysics (astro-ph.SR)
quark stars, Ciencias Astronómicas, Nuclear Theory, strange quark matter, FOS: Physical sciences, neutron stars, Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Astrophysics - Solar and Stellar Astrophysics, pulsars, equation of state, Solar and Stellar Astrophysics (astro-ph.SR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
